Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 68(3): 314-325, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36378826

RESUMO

TRPA1 (transient receptor potential ankyrin 1) is a nonselective Ca2+-permeable cation channel, which was originally cloned from human lung fibroblasts (HLFs). TRPA1-mediated Ca2+ entry is evoked by exposure to several chemicals, including allyl isothiocyanate (AITC), and a protective effect of TRPA1 activation in the development of cardiac fibrosis has been proposed. Yet the function of TRPA1 in TGF-ß1 (transforming growth factor-ß1)-driven fibroblast-to-myofibroblast differentiation and the development of pulmonary fibrosis remains elusive. TRPA1 expression and function were analyzed in cultured primary HLFs, and mRNA concentrations were significantly reduced after adding TGF-ß1. Expression of genes encoding fibrosis markers (e.g., ACTA2, SERPINE1 [plasminogen activator inhibitor 1], FN1 [fibronectin], COL1A1 [type I collagen]) was increased after siRNA-mediated downregulation of TRPA1 mRNA in HLFs. Moreover, AITC-induced Ca2+ entry in HLFs was decreased after TGF-ß1 treatment and by application of TRPA1 siRNAs, while AITC treatment alone did not reduce cell viability or enhance apoptosis. Most interestingly, AITC-induced TRPA1 activation augmented ERK1/2 (extracellular signal-regulated kinase 1/2) and SMAD2 linker phosphorylation, which might inhibit TGF-ß-receptor signaling. Our results suggest an inhibitory function of TRPA1 channels in TGF-ß1-driven fibroblast-to-myofibroblast differentiation. Therefore, activation of TRPA1 channels might be protective during the development of pulmonary fibrosis in patients.


Assuntos
Fibrose Pulmonar , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Fibrose Pulmonar/patologia , Miofibroblastos/metabolismo , Fibroblastos/metabolismo , Diferenciação Celular/fisiologia , Fibrose , RNA Mensageiro/genética , Células Cultivadas , Canal de Cátion TRPA1/metabolismo
2.
Cells ; 11(18)2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36139480

RESUMO

Our respiratory system is exposed to toxicants and pathogens from both sides: the airways and the vasculature. While tracheal, bronchial and alveolar epithelial cells form a natural barrier in the airways, endothelial cells protect the lung from perfused toxic compounds, particulate matter and invading microorganism in the vascular system. Damages induce inflammation by our immune response and wound healing by (myo)fibroblast proliferation. Members of the transient receptor potential (TRP) superfamily of ion channel are expressed in many cells of the respiratory tract and serve multiple functions in physiology and pathophysiology. TRP expression patterns in non-neuronal cells with a focus on TRPA1, TRPC6, TRPM2, TRPM5, TRPM7, TRPV2, TRPV4 and TRPV6 channels are presented, and their roles in barrier function, immune regulation and phagocytosis are summarized. Moreover, TRP channels as future pharmacological targets in chronic obstructive pulmonary disease (COPD), asthma, cystic and pulmonary fibrosis as well as lung edema are discussed.


Assuntos
Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Células Endoteliais/metabolismo , Pulmão/metabolismo , Material Particulado , Canal de Cátion TRPC6/metabolismo , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
3.
Arch Toxicol ; 96(10): 2767-2783, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35864199

RESUMO

Sustained exposure of the lung to various environmental or occupational toxins may eventually lead to pulmonary fibrosis, a devastating disease with no cure. Pulmonary fibrosis is characterized by excessive deposition of extracellular matrix (ECM) proteins such as fibronectin and collagens. The peptidase plasmin degrades the ECM, but protein levels of the plasmin activator inhibitor-1 (PAI-1) are increased in fibrotic lung tissue, thereby dampening plasmin activity. Transforming growth factor-ß1 (TGF-ß1)-induced activation of SMAD transcription factors promotes ECM deposition by enhancing collagen, fibronectin and PAI-1 levels in pulmonary fibroblasts. Hence, counteracting TGF-ß1-induced signaling is a promising approach for the therapy of pulmonary fibrosis. Transient receptor potential cation channel subfamily M Member 7 (TRPM7) supports TGF-ß1-promoted SMAD signaling in T-lymphocytes and the progression of fibrosis in kidney and heart. Thus, we investigated possible effects of TRPM7 on plasmin activity, ECM levels and TGF-ß1 signaling in primary human pulmonary fibroblasts (pHPF). We found that two structurally unrelated TRPM7 blockers enhanced plasmin activity and reduced fibronectin or PAI-1 protein levels in pHPF under basal conditions. Further, TRPM7 blockade strongly inhibited fibronectin and collagen deposition induced by sustained TGF-ß1 stimulation. In line with these data, inhibition of TRPM7 activity diminished TGF-ß1-triggered phosphorylation of SMAD-2, SMAD-3/4-dependent reporter activation and PAI-1 mRNA levels. Overall, we uncover TRPM7 as a novel supporter of TGF-ß1 signaling in pHPF and propose TRPM7 blockers as new candidates to control excessive ECM levels under pathophysiological conditions conducive to pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Canais de Cátion TRPM , Colágeno/antagonistas & inibidores , Colágeno/metabolismo , Fibrinolisina/metabolismo , Fibroblastos , Fibronectinas/efeitos adversos , Fibronectinas/antagonistas & inibidores , Fibronectinas/metabolismo , Fibrose , Humanos , Pulmão/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteínas Serina-Treonina Quinases , Fibrose Pulmonar/induzido quimicamente , Canais de Cátion TRPM/metabolismo , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/metabolismo
4.
Dev Dyn ; 251(3): 536-550, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34494340

RESUMO

BACKGROUND: Tissue organoids derived from primary cells have high potential for studying organ development and diseases in numerous organs. They recreate the morphological structure and mimic the functions of given organ while being compact in size, easy to produce, and suitable for use in various experimental setups. RESULTS: In this study we established the number of cells that form mouse kidney rudiments at E11.5, and generated renal organoids of various sizes from the mouse primary cells of the metanephric mesenchyme (MM). We investigated the ability of renal organoids to undergo nephrogenesis upon Wnt/ ß-catenin pathway-mediated tubule induction with a GSK-3 inhibitor (BIO) or by initiation through the ureteric bud (UB). We found that 5000 cells of MM cells are necessary to successfully form renal organoids with well-structured nephrons as judged by fluorescent microscopy, transmission electron microscopy (TEM), and quantitative Polymerase Chain Reaction (qPCR). These mouse organoids also recapitulated renal secretion function in the proximal tubules. CONCLUSIONS: We show that a significant decrease of cells used to generate renal mouse organoids in a dissociation/re-aggregation assay, does not interfere with development, and goes toward 3Rs. This enables generation of more experimental samples with one mouse litter, limiting the number of animals used for studies.


Assuntos
Quinase 3 da Glicogênio Sintase , Organogênese , Animais , Rim , Mesoderma , Camundongos , Néfrons
5.
Cells ; 10(4)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917551

RESUMO

Members of the transient receptor potential (TRP) superfamily are broadly expressed in our body and contribute to multiple cellular functions. Most interestingly, the fourth member of the vanilloid family of TRP channels (TRPV4) serves different partially antagonistic functions in the respiratory system. This review highlights the role of TRPV4 channels in lung fibroblasts, the lung endothelium, as well as the alveolar and bronchial epithelium, during physiological and pathophysiological mechanisms. Data available from animal models and human tissues confirm the importance of this ion channel in cellular signal transduction complexes with Ca2+ ions as a second messenger. Moreover, TRPV4 is an excellent therapeutic target with numerous specific compounds regulating its activity in diseases, like asthma, lung fibrosis, edema, and infections.


Assuntos
Sinalização do Cálcio , Pulmão/metabolismo , Pulmão/fisiopatologia , Doenças Respiratórias/metabolismo , Doenças Respiratórias/fisiopatologia , Canais de Cátion TRPV/metabolismo , Animais , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Pulmão/patologia , Vasodilatação
6.
Sci Rep ; 10(1): 6812, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321939

RESUMO

Stromal interaction molecules (STIM1, 2) are acting as sensors for Ca2+ in intracellular stores and activate Orai channels at the plasma membrane for store-operated Ca2+ entry (SOCE), while classical transient receptor potential (TRPC) channel mediate receptor-operated Ca2+ entry (ROCE). Several reports, however, indicate a role for TRPC in SOCE in certain cell types. Here, we analyzed Ca2+ influx and cell function in TRPC1/6-deficient (TRPC1/6-/-) and STIM1/2- deficient (STIM1/2ΔpmLF) primary murine lung fibroblasts (pmLF). As expected, SOCE was decreased in STIM1/2- deficient pmLF and ROCE was decreased in TRPC1/6-/- pmLF compared to control cells. By contrast, SOCE was not significantly different in TRPC1/6-/- pmLF and ROCE was similar in STIM1/2-deficient pmLF compared to Wt cells. Most interestingly, cell proliferation, migration and nuclear localization of nuclear factor of activated T-cells (NFATc1 and c3) were decreased after ablation of STIM1/2 proteins in pmLF. In conclusion, TRPC1/6 channels are not involved in SOCE and STIM1/2 deficiency resulted in decreased cell proliferation and migration in pmLF.


Assuntos
Cálcio/metabolismo , Movimento Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Pulmão/citologia , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , DNA/biossíntese , Endotelina-1/farmacologia , Éxons/genética , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Molécula 1 de Interação Estromal/deficiência , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/deficiência , Molécula 2 de Interação Estromal/genética , Molécula 2 de Interação Estromal/metabolismo , Tapsigargina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...